pyjsgf Documentation
Release 1.9.0

Dane Finlay

Jan 04, 2023

Contents:

1 Introduction 3
.1 Inmstallation e e e e e e 3
1.2 Supported Python Versions 3
1.3 UnitTesting o o e e 3
1.4 Multilingual Support e 4
1.5 Documentation it e e e e e e e e e e 4
2 jsgf — JSpeech Grammar Format (JSGF) package 5
2.1 errors—Erorclassesmodule e e e 5
2.2 expansions — Expansion classes and functionsmodule 0oL, 6
2.3 jsgf.ext —JSGFextensions sub-package Lo 13
24 grammars — Grammar classesmodule oL oL 18
2.5 parser—Parsermodule oL e 23
2.6 references—Referencesmodule L. L e 25
2.7 rules—Ruleclassesmodule e 26
3 Changelog 29
3.1 1.9.0-2020-04-07 o o o e 29
32 1.8.0-2020-01-31 e 30
33 L7.1=2019-07-10 o o e e 30
34 1.7.0-2019-06-19 L e e 30
3.5 1.6.0-2019-03-17 o e e 31
3.6 151 -2018-10-28 e 31
3.7 1.5.0-=2018-00-11 o e e 32
3.8 1.4.1-2018-08-20 e 33
39 1.4.0-2018-08-09 o e 33
3.10 1.3.0-2018-07-14 o e 33
301 1.23-2018-00-02 e e 34
3,12 1.22-2018-04-28 e 34
3.3 1.2.1=2018-04-27 . . . o o e e 34
3,14 1.2.0-2018-04-09 e e 35
305 1.1.1=2018-03-20 o o e 35
4 Indices and tables 37
Python Module Index 39

Index

41

pyjsgf Documentation, Release 1.9.0

Release v1.9.0
JSpeech Grammar Format (JSGF) compiler, matcher and parser package for Python.

JSGF is a format used to textually represent grammars for speech recognition engines. You can read the JSGF speci-
fication here.

Contents: 1

https://www.w3.org/TR/jsgf

pyjsgf Documentation, Release 1.9.0

2 Contents:

CHAPTER 1

Introduction

pyjsgf can be used to construct JSGF rules and grammars, compile them into strings or files, and find grammar rules
that match speech hypothesis strings. Matching speech strings to tags is also supported. There are also parsers for
grammars, rules and rule expansions.

There are some usage examples in pyjsgf/examples which may help you get started.

1.1 Installation

To install pyjsgf, run the following:

’$ pip install pyjsgf

If you are installing in order to develop pyjsgf, clone/download the repository, move to the root directory and run:

’$ pip install -e .

1.2 Supported Python Versions

pyjsgf has been written and tested for Python 2.7 and 3.5.

Please file an issue if you notice a problem specific to the version of Python you are using.

1.3 Unit Testing

There are extensive unit tests in pyjsgf/test. There is also a Travis CI project here. The test coverage is not 100%, but
most classes, methods and functions are covered pretty well.

https://github.com/Danesprite/pyjsgf/tree/master/examples
https://github.com/Danesprite/pyjsgf/tree/master/test
https://travis-ci.org/Danesprite/pyjsgf

pyjsgf Documentation, Release 1.9.0

1.4 Multilingual Support

Due to Python’s Unicode support, pyjsgf can be used with Unicode characters for grammar, import and rule names,
as well as rule literals. If you need this, it is better to use Python 3 or above where all strings are Unicode strings by
default.

If you must use Python 2.x, you’ll need to define Unicode strings as either u"text" or unicode (text,
encoding), which is a little cuambersome. If you want to define Unicode strings in a source code file, you’ll need to
define the source code file encoding.

1.5 Documentation

The documentation for this project is written in reStructuredText and built using Sphinx. Run the following to build it
locally:

$ cd docs
$ make html

4 Chapter 1. Introduction

https://www.python.org/dev/peps/pep-0263/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable

CHAPTER 2

jsgf — JSpeech Grammar Format (JSGF) package

This package contains classes and functions for compiling, matching and parsing JSGF grammars using rules, imports
and rule expansions, such as sequences, repeats, optional and required groupings.

2.1 errors — Error classes module

This module contains pyjsgf’s exception classes.

2.1.1 Classes
class jsgf.errors.CompilationError
Error raised when compiling an invalid grammar.

This error is currently only raised if a Literal expansion is compiled with the empty string (' ') as its text
value.

class Jjsgf.errors.GrammarError
Error raised when invalid grammar operations occur.

This error is raised under the following circumstances:
* When matching or resolving referenced rules that are out-of-scope.
* Attempting to enable, disable or retrieve a rule that isn’t in a grammar.
* Attempting to remove rules referenced by other rules in the grammar.
* Attempting to add a rule to a grammar using an already taken name.
 Using an invalid name (such as NULL or VOID) for a grammar name, rule name or rule reference.

* Passing a grammar string with an illegal expansion to a parser function, such as a tagged repeat (e.g.
blah+ {tag}).

class jsgf.errors.ExpansionError
This error class has been deprecated and is no longer used.

pyjsgf Documentation, Release 1.9.0

class jsgf.errors.MatchError
This error class has been deprecated and is no longer used.

2.2 expansions — Expansion classes and functions module

This module contains classes for compiling and matching JSpeech Grammar Format rule expansions.

2.2.1 Classes

class jsgf.expansions.AlternativeSet (*expansions)
Class for a set of expansions, one of which can be spoken.

generate ()
Generate a matching string for this alternative set.

Each alternative has an equal chance of being chosen for string generation.

If weights are set, then the probability of an alternative is its weight over the sum of all weights:

p = w / sum(weights)

set_weight (child, weight)
Set the weight of a child.

The weight determines how likely it is that an alternative was spoken.

Higher values are more likely, lower values are less likely. A value of O means that the alternative will
never be matched. Negative weights are not allowed.

Note: weights are compiled as floating-point numbers accurate to 4 decimal places, e.g. 5.0001.
Parameters
* child (Expansion/int |[str) - child/list index/compiled child to set the weight for.

* weight (float [int)— weight value - must be >=0

weights
The dictionary of alternatives to their weights.

Return type dict

class jsgf.expansions.ChildList (expansion, seq=())
List wrapper class for expansion child lists.

The parent attribute of each child will be set appropriately when they added or removed from lists.

clear ()
Remove all expansions from this list and unset their parent attributes.

orphan_children ()
Set each child’s parent to None.

class jsgf.expansions.Expansion (children)
Expansion base class.

_make matcher element ()
Method used by the matcher_element property to create ParserElements.

Subclasses should implement this method for speech matching functionality.

6 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

children
List of children.

Returns ChildList

collect_ leaves (order=0, shallow=False)
Collect all descendants of an expansion that have no children. This can include self if it has no children.
RuleRefs are also counted as leaves.

Parameters

¢ order - tree traversal order (default O: pre-order)

* shallow — whether to not collect leaves from trees of referenced rules
Returns list

compiled_tag
Get the compiled tag for this expansion if it has one. The empty string is returned if there is no tag set.

Returns str

copy (shallow=False)
Make a copy of this expansion. This returns a deep copy by default. Neither referenced rules or their
expansions will be deep copied.

Parameters shallow — whether to create a shallow copy (default: False)
Returns Expansion

current_match
Currently matched speech value for this expansion.

If the expansion hasn’t been matched, this will be None (if required) or *’ (if optional).
Returns str | None

generate ()
Generate a string matching this expansion.

had_match
Whether this expansion has a current_match value that is not ’ or None. This will also check if this
expansion was part of a complete repetition if it has a Repeat or KleeneStar ancestor.

Returns bool

invalidate_calculations ()
Invalidate calculations stored in the lookup tables that involve this expansion. This only effects
mutually_ exclusive_of and is_descendant_of, neither of which are used in compiling or
matching rules.

This should be called if a child is added to an expansion or if an expansion’s parent is changed outside of
what JointTreeContext does.

Some changes may also require invalidating descendants, the map_expansion function can be used
with this method to accomplish that:

map_expansion(self, Expansion.invalidate_calculations)

invalidate_matcher ()
Method to invalidate the parser element used for matching this expansion. This is method is called auto-
matically when a parent is set or a ChildList is modified. The parser element will be recreated again when
required.

2.2. expansions — Expansion classes and functions module 7

pyjsgf Documentation, Release 1.9.0

This only needs to be called manually if modifying an expansion tree after matching with a Dictation
expansion.

is_alternative
Whether or not this expansion has an AlternativeSet ancestor with more than one child.

Returns bool

is_descendant_of (other)
Whether this expansion is a descendant of another expansion.

Parameters other — Expansion
Returns bool

is_optional
Whether or not this expansion has an optional ancestor.

Returns bool

leaves
Collect all descendants of an expansion that have no children. This can include self if it has no children.
RuleRefs are also counted as leaves.

Parameters

* order - tree traversal order (default O: pre-order)

¢ shallow — whether to not collect leaves from trees of referenced rules
Returns list

leaves_after
Generator function for leaves after this one (if any).

Returns generator

static make_expansion (e)
Take an object, turn it into an Expansion if it isn’t one and return it.

Parameters e — str | Expansion
Returns Expansion

matchable_leaves_after
Generator function yielding all leaves after self that are not mutually exclusive of it.

Returns generator

matcher_element
Lazily initialised pyparsing ParserElement used to match speech to expansions. It will also set
current_match values.

Returns pyparsing.ParserElement

matches (speech)
Match speech with this expansion, set current_match to the first matched substring and return the
remainder of the string.

Matching ambiguous rule expansions is not supported because it not worth the performance hit. Ambigu-
ous rule expansions are defined as some optional literal x followed by a required literal x. For example,
successfully matching 'test ' for the following rule is not supported:

<rule> = [test] test;

8 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

Parameters speech — str
Returns str
matching_slice
Slice of the last speech string matched. This will be None initially.
Return type slice

mutually exclusive_of (other)
Whether this expansion cannot be spoken with another expansion.

Parameters other — Expansion
Returns bool

parent
This expansion’s parent, if it has one.

Setting the parent will call Expansion.invalidate_matcher as necessary on the new and old
parents.

Returns Expansion | None

repetition_ancestor
This expansion’s closest Repeat or KleeneStar ancestor, if it has one.

Returns Expansion

reset_for_ new _match ()
Call reset_match_data for this expansion and all of its descendants.

reset_match data()
Reset any members or properties this expansion uses for matching speech, i.e. current_match values.

This does not invalidate matcher_element.

root_expansion
Traverse to the root expansion r and return it.

Returns Expansion

tag
JSGF tag for this expansion.

Set to None for no tag and the empty string for no tag text.
Returns str

validate_compilable ()
Check that the expansion is compilable. If it isn’t, this method should raise a CompilationError.

Raises CompilationError

class jsgf.expansions.JointTreeContext (root_expansion)
Class that temporarily joins an expansion tree with the expansion trees of all referenced rules by setting the
parent relationships.

This is useful when it is necessary to view an expansion tree and the expansion trees of referenced rules as one
larger tree. E.g. when determining mutual exclusivity of two expansions, if an expansion is optional or used for
repetition in the context of other trees, etc.

Note: this class will reduce the matching performance if used, but will only be noticeable with larger grammars.

On__exit__, the trees will be detached recursively.

2.2. expansions — Expansion classes and functions module 9

pyjsgf Documentation, Release 1.9.0

This class can be used with Python’s with statement.

static detach_tree (x)
If x is a NamedRuleRef, detach its referenced rule’s expansion from this tree.

Parameters x — Expansion

static join_tree (x)
If x is a NamedRuleRef, join its referenced rule’s expansion to this tree.

Parameters x — Expansion

class jsgf.expansions.KleeneStar (expansion)
JSGF Kleene star operator for allowing zero or more repeats of an expansion.

For example:

<kleene> = (please)x don't crash;

generate ()
Generate a string matching this expansion.

This method can generate zero or more repetitions of the child expansion, zero repetitions meaning the
empty string (“”) will be returned.

Return type str

class jsgf.expansions.Literal (fext, case_sensitive=False)
Expansion class for literals.

case_sensitive
Case sensitivity used when matching and compiling Literal rule expansions.

This property can be True or False. Matching and compilation will be case-sensitive if True and
case-insensitive if False. The default value is False.

Return type bool
Returns literal case sensitivity

generate ()
Generate a string matching this expansion’s text.

This will just return the value of text.
Return type str

matching regex pattern
A regex pattern for matching this expansion.

This property has been left in for backwards compatibility. The Expansion.matches method now
uses the matcher_element property instead.

Returns regex pattern object

text
Text to match/compile.

This will return lowercase text if case_sensitiveisnot True.
Return type str
Returns text

validate_compilable ()
Check that the expansion is compilable. If it isn’t, this method should raise a CompilationError.

10 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

Raises CompilationError

class jsgf.expansions.NamedRuleRef (name)
Class used to reference rules by name.

generate ()
Generate a string matching the referenced rule’s expansion.

Return type str

referenced_rule
Find and return the rule this expansion references in the grammar.

This raises an error if the referenced rule cannot be found using self.rule.grammar or if there is no
link to a grammar.

Raises GrammarError
Returns Rule

class jsgf.expansions.NullRef
Reference expansion for the special NULL rule.

The NULL rule always matches speech. If this reference is used by a rule, that part of the rule expansion requires
no speech substring to match.

class jsgf.expansions.OptionalGrouping (expansion)
Class for expansions that can be optionally spoken in a rule.

generate ()
Generate a string matching this expansion.

class jsgf.expansions.Repeat (expansion)
JSGF plus operator for allowing one or more repeats of an expansion.

For example:

<repeat> = (please)+ don't crash;

generate ()
Generate a string matching this expansion.

This method can generate one or more repetitions of the child expansion.
Return type str

get_expansion_matches (¢)
Get a list of an expansion’s current_mat ch values for each repetition.

Returns list

get_expansion_slices (¢)
Get a list of an expansion’s mat ching_slice values for each repetition.

Returns list

repetitions_matched
The number of repetitions last matched.

Returns int

reset_match_data ()
Reset any members or properties this expansion uses for matching speech, i.e. current_match values.

This does not invalidate matcher_element.

2.2. expansions — Expansion classes and functions module 11

pyjsgf Documentation, Release 1.9.0

class jsgf.expansions.RequiredGrouping (*expansions)
Subclass of Sequence for wrapping multiple expansions in parenthesises.

class jsgf.expansions.RuleRef (referenced_rule)
Subclass of NamedRuleRef for referencing another rule with a Rule object.

Parameters referenced rule —

class jsgf.expansions.Sequence (*expansions)
Class for expansions to be spoken in sequence.

class Jjsgf.expansions.VoidRef
Reference expansion for the special VOID rule.

The VOID rule can never be spoken. If this reference is used by a rule, then it will not match unless the reference
it is optional.

2.2.2 Functions
jsgf.expansions.filter_expansion (e, func=<function <lambda>>, order=0, shallow=False)
Find all expansions in an expansion tree for which func(x) == True.
Parameters
* e — Expansion
» func - callable (default: the identity function, f(x)->x)
* order —int
* shallow — whether to not process trees of referenced rules (default False)
Returns list

jsgf.expansions. find_expansion (e, func=<function <lambda>>, order=0, shallow=False)
Find the first expansion in an expansion tree for which func(x) is True and return it. Otherwise return None.

This function will stop searching once a matching expansion is found, unlike the other top-level functions in
this module.

Parameters

* e — Expansion

* func - callable (default: the identity function, f(x)->x)

* order —int

* shallow — whether to not process trees of referenced rules (default False)
Returns Expansion | None

jsgf.expansions.flat_map_expansion (e, func=<function <lambda>>, order=0, shallow=False)
Call map_expansion with the arguments and return a single flat list.

Parameters
* e — Expansion
* func - callable (default: the identity function, f(x)->x)
* order —int
* shallow — whether to not process trees of referenced rules (default False)

Returns list

12 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

jsgf.expansions.map_expansion (e, func=<function <lambda>>, order=0, shallow=False)
Traverse an expansion tree and call func on each expansion returning a tuple structure with the results.

Parameters

* e — Expansion

» func — callable (default: the identity function, f(x)->x)

* order —int

* shallow — whether to not process trees of referenced rules (default False)
Returns tuple

jsgf.expansions.matches_overlap (ml, m2)
Check whether two regex matches overlap.

Returns bool

jsgf.expansions.restore_current_matches (e, values, override_none=True)
Traverse an expansion tree and restore matched data using the values dictionary.

Parameters
* e — Expansion
e values —dict
¢ override_ none — bool

jsgf.expansions.save_current_matches (¢)
Traverse an expansion tree and return a dictionary populated with each descendant Expansion and its match
data.

This will also include e.
Parameters e — Expansion

Returns dict

2.3 jsgf.ext — JSGF extensions sub-package

This sub-package contains extensions to JSGF, notably the Dictation, SequenceRule and
DictationGrammar classes.

2.3.1 expansions — Extension expansion classes and functions module

This module contains extension rule expansion classes and functions.

Classes
class Jjsgf.ext.expansions.Dictation
Class representing dictation input matching any spoken words.
This is largely based on the Dictation element class in the dragonfly Python library.

Dictation expansions compile to a special reference (<DICTATION>), similar to NullRef and VoidRef.
See the DictationGrammar class if you want to use this expansion type with CMU Pocket Sphinx.

2.3. jsgf.ext — JSGF extensions sub-package 13

pyjsgf Documentation, Release 1.9.0

The matching implementation for Dictation expansions will look ahead for possible next literals to avoid
matching them and making the rule fail to match. It will also look backwards for literals in possible future
repetitions.

It will not however look at referencing rules for next possible literals. If you have match failures because of
this, only use Dictation expansions in public rules or use the Joint TreeContext class before matching
if you don’t mind reducing the matching performance.

matching_ regex pattern
A regex pattern for matching this expansion.

This property has been left in for backwards compatibility. The Expansion.matches method now
uses the matcher_element property instead.

Returns regex pattern object

use_current_match
Whether to match the current_match value next time rather than matching one or more words.

This is used by the SequenceRule.graft_sequence_matches method.
Returns bool

validate compilable ()
Check that the expansion is compilable. If it isn’t, this method should raise a CompilationError.

Raises CompilationError

Functions
jsgf.ext.expansions.calculate_expansion_sequence (expansion, should_deepcopy=True)
Split an expansion into 2 *n expansions where »n is the number of Dictat ion expansions in the expansion tree.
If there aren’t any Dictat ion expansions, the result will be the original expansion.
Parameters
* expansion — Expansion
* should_deepcopy — whether to deepcopy the expansion before using it
Returns list

jsgf.ext.expansions.expand_dictation_expansion (expansion)
Take an expansion and expand any AlternativeSet with alternatives containing Dictat ion expansions.
This function returns a list of all expanded expansions.

Parameters expansion — Expansion

Returns list

2.3.2 rules — Extension rule classes module

This module contains extension rule classes.

Classes

class jsgf.ext.rules.SequenceRule (name, visible, expansion, case_sensitive=False)
Class representing a list of regular expansions and Dictat ion expansions that must be spoken in a sequence.

14 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

can_repeat
Whether the entire SequenceRule can be repeated multiple times.

Note that if the rule can be repeated, data from a repetition of the rule, such as current_match values of
each sequence expansion, should be stored before restart_sequence is called for a further repetition.

compile ()
Compile this rule’s expansion tree and return the result.

Returns str

current_is_dictation_only
Whether the current expansion in the sequence contains only Dictat ion expansions.

Returns bool

entire_match
If the entire sequence is matched by successive calls to the matches method, this returns all strings that
matched joined together by spaces.

Returns str

expansion_sequence
The expansion sequence used by the rule.

Returns tuple

static graft_sequence_matches (sequence_rule, expansion)
Take a SequenceRule and an expansion and attempt to graft the matches of all expansions in the se-
quence onto the given expansion in-place.

Not all expansions in the sequence need to have been matched.
Parameters
* sequence_rule — SequenceRule
* expansion — Expansion

has_next_expansion
Whether there is another sequence expansion after the current one.

Returns bool

matches (speech)
Return whether or not speech matches the current expansion in the sequence.

This also sets current_match values for the original expansion used to create this rule.

This method will only match once and return False on calls afterward until refuse_matches is False.
Parameters speech — str
Returns bool

refuse_matches
Whether or not matches on this rule can succeed.

This is set to False if set_next is called and there is a next expansion or if restart_sequence is
called.

This can also be manually set with the setter for problematic situations where, for example, the current
expansion is a Repeat expansion with a Dictation descendant.

Returns bool

23.

jsgf.ext — JSGF extensions sub-package 15

pyjsgf Documentation, Release 1.9.0

restart_sequence ()

Resets the current sequence expansion to the first one in the sequence and clears the match data of each
sequence expansion.

set_next ()
Moves to the next expansion in the sequence if there is one.

tags
The set of JSGF tags in this rule’s expansion. This does not include tags in referenced rules.

Returns set

class jsgf.ext.rules.PublicSequenceRule (name, expansion, case_sensitive=False)
SequenceRule subclass with visible set to True.

jsgf.ext.rules.HiddenSequenceRule
alias of jsgf.ext.rules.PrivateSequenceRule

2.3.3 grammars — Extension grammar classes module

This module contains extension grammar classes.

Classes

class jsgf.ext.grammars.DictationGrammar (rules=None, name="default’,

] case_sensitiye:False))
Grammar subclass that processes rules using Dictation expansions so they can be compiled, matched and

used with normal JSGF rules with utterance breaks.
Parameters
e rules —list
* name — str
* case_sensitive —bool

add_rule (rule)
Add a rule to the grammar.

This method will override the new rule’s case_sensitive value with the grammar’s
case_sensitive value.

Parameters rule — Rule
Raises GrammarError
compile ()
Compile this grammar’s header, imports and rules into a string that can be recognised by a JSGF parser.
Returns str

compile_as_root_grammar ()

Compile this grammar with one public “root” rule containing rule references in an alternative set to every
other rule as such:

public <root>
<rulel> = ...;

<rulel>|<rule2>|..|<ruleN>;

<rule2> e

(continues on next page)

16 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

(continued from previous page)

<ruleN> = ...;

This is useful if you are using JSGF grammars with CMU Pocket Sphinx.
Returns str

find_matching_ rules (speech, advance_sequence_rules=True)
Find each visible rule passed to the grammar that matches the speech string. Also set matches for the
original rule.

Parameters
* speech —str

* advance_sequence_rules — whether to call set_next () for successful sequence
rule matches.

Returns list

get_generated_rules (rule)
Get the rules generated from a rule added to this grammar.

Parameters rule — Rule
Returns generator

get_original_rule (rule)
Get the original rule from a generated rule.

Parameters rule — Rule
Returns Rule

match_rules
The rules that the find_matching_rules method will match against.

Returns list

rearrange_rules ()
Move each SequenceRule in this grammar between the dictation rules list and the internal grammar
used for JSGF only rules depending on whether a SequenceRule’s current expansion is dictation-only
or not.

remove_rule (rule, ignore_dependent=False)
Remove a rule from this grammar.

Parameters

* rule — Rule object or the name of a rule in this grammar

* ignore_dependent — whether to check if the rule has dependent rules
Raises GrammarError

reset_sequence_rules ()
Reset each SequenceRule in this grammar so that they can accept matches again.

rules
The rules in this grammar.

This includes internal generated rules as well as original rules.

Returns list

23.

jsgf.ext — JSGF extensions sub-package 17

pyjsgf Documentation, Release 1.9.0

2.4 grammars — Grammar classes module

This module contains classes for compiling, importing from and matching JSpeech Grammar Format grammars.

2.4.1 Classes

class jsgf.grammars.Import (name)

Import objects used in grammar compilation and import resolution.

Import names must be fully qualified. This means they must be in the reverse domain name format that Java
packages use. Wildcards may be used to import all public rules in a grammar.

The following are valid rule import names:
e com.example.grammar.rule_name
e grammar.rule_name
* com.example.grammar.*
e grammar.*

There are two reserved rule names: NULL and VOID. These reserved names cannot be used as import names.
You can however change the case to ‘null’ or ‘void’ to use them, as names are case-sensitive.

grammar_name
The full name of the grammar to import from.

Returns grammar name
Return type str

resolve (memo=None, file_exts=None)
Resolve this import statement and return the imported Rule object(s).

This method attempts to parse grammar files in the working directory and its sub-directories. If a dictionary
was passed for the memo argument, then that dictionary will be updated with the parsed grammar and rules.

Errors will be raised if the grammar could not be found and parsed, or if the import statement could not be
resolved.

Parameters
* memo (dict) — dictionary of import names to grammar rules

e file exts (1ist | tuple) - list of grammar file extensions to check against (de-
fault: (".jsgf", ".jgram"))

Returns imported Rule or list of Rules
Return type Rule | list
Raises GrammarError | JSGFImportError

rule_name
The name of the rule to import from the grammar.

Returns rule name
Return type str

wildcard_import
Whether this import statement imports every grammar rule.

18

Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

Returns bool
Return type bool

class jsgf.grammars.Grammar (name=’default’, case_sensitive=False)
Base class for JSGF grammars.

Grammar names can be either a qualified name with dots or a single name. A name is defined as a single
word containing one or more alphanumeric Unicode characters and/or any of the following special characters:
+-55,=/O[] @#% ! "&~$

For example, the following are valid grammar names: com.example.grammar grammar

There are two reserved rule names: NULL and VOID. These reserved names cannot be used as grammar names.
You can however change the case to ‘null’ or ‘void’ to use them, as names are case-sensitive.

add_import (_import)
Add an import statement to the grammar.

Parameters _import — Import

add_imports (*imports)
Add multiple imports to the grammar.

Parameters imports — imports

add rule (rule)
Add a rule to the grammar.

This method will override the new rule’s case_sensitive value with the grammar’s
case sensitive value.

Parameters rule — Rule
Raises GrammarError

add_rules (*rules)
Add multiple rules to the grammar.

This method will override each new rule’s case_sensitive value with the grammar’s
case_sensitive value.

Parameters rules —rules
Raises GrammarError

case_sensitive
Case sensitivity used when matching and compiling Literal rule expansions.

Setting this property will override the case_sensitive values foreach Rule and Literal expansion
in the grammar or in any newly added grammar rules.

Return type bool
Returns case sensitivity

compile ()
Compile this grammar’s header, imports and rules into a string that can be recognised by a JSGF parser.

Returns str

compile_as_root_grammar ()
Compile this grammar with one public “root” rule containing rule references in an alternative set to every
other rule as such:

2.4. grammars — Grammar classes module 19

pyjsgf Documentation, Release 1.9.0

public <root> = <rulel>|<rule2>|..|[<ruleN>;
<rulel> = ...;
<rule2> = ...;

<ruleN> = ...;

This is useful if you are using JSGF grammars with CMU Pocket Sphinx.
Returns str

compile_grammar (charset_name="UTF-8’, language_name="en’, jsgf_version="1.0")
Compile this grammar’s header, imports and rules into a string that can be recognised by a JSGF parser.

This method is deprecated, use compile instead.
Parameters
* charset_name -
* language_name —
* jsgf_version-—
Returns str

compile_to_file (file_path, compile_as_root_grammar=False)
Compile this grammar by calling compi 1e and write the result to the specified file.

Parameters
e file_path-str
* compile_as_root_grammar — bool

disable_rule (rule)
Disable a rule in this grammar, preventing it from appearing in the compile method output or being matched
with the find_matching_rules method.

Parameters rule — Rule object or the name of a rule in this grammar
Raises GrammarError

enable_rule (rule)
Enable a rule in this grammar, allowing it to appear in the compile method output and to be matched with
the find_matching_rules method.

Rules are enabled by default.
Parameters rule — Rule object or the name of a rule in this grammar
Raises GrammarError

find_matching rules (speech)
Find each visible rule in this grammar that matches the speech string.

Parameters speech - str
Returns list

find_tagged_rules (tag, include_hidden=False)
Find each rule in this grammar that has the specified JSGF tag.

Parameters

20 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

e tag —str
¢ include_hidden — whether to include hidden rules (default False).
Returns list

get_rule (name)
Get a rule object with the specified name if one exists in the grammar or its imported rules.

If name is a fully-qualified rule name, then this method will attempt to import it.
Parameters name — str
Returns Rule
Raises GrammarError | TypeError | JSGFImportError

get_rule_from_name (name)
Get a rule object with the specified name if one exists in the grammar or its imported rules.

If name is a fully-qualified rule name, then this method will attempt to import it.
Parameters name — str
Returns Rule
Raises GrammarError | TypeError | JSGFImportError

get_rules (*names)
Get rule objects with the specified names, if they exist in the grammar.

Parameters names — str
Returns list
Raises GrammarError

get_rules_from names (*names)
Get rule objects with the specified names, if they exist in the grammar.

Parameters names — str
Returns list
Raises GrammarError

import_environment

A dictionary of imported rules and their grammars that functions as the import environment of this gram-
mar.

The import environment dictionary is updated internally by the resolve imports () method.
Return type dict
Returns dictionary of import names to grammar rules

import_names
The import names associated with this grammar.

Returns list

imports
Get the imports for this grammar.

Returns list

jsgf_header
The JSGF header string for this grammar. By default this is:

2.4. grammars — Grammar classes module 21

pyjsgf Documentation, Release 1.9.0

Returns str
match rules
The rules that the find_matching_rules method will match against.
Returns list

remove_import (_import)
Remove an Import from the grammar.

Parameters _import — Import

remove_imports (*imports)
Remove multiple imports from the grammar.

Parameters imports — imports

remove_rule (rule, ignore_dependent=False)
Remove a rule from this grammar.

Parameters

* rule — Rule object or the name of a rule in this grammar

* ignore_dependent — whether to check if the rule has dependent rules
Raises GrammarError

resolve_imports (memo=None, file_exts=None)
Resolve each import statement in the grammar and make the imported Rule object(s) available for refer-
encing and matching.

This method attempts to parse grammar files in the working directory and its sub-directories. If a dictionary
was passed for the memo argument, then that dictionary will be updated with the parsed grammars and
rules.

Errors will be raised if a grammar could not be found and parsed, or if an import statement could not be
resolved.

Parameters
* memo (dict) —dictionary of import names to grammar rules

e file exts (1ist | tuple) - list of grammar file extensions to check against (de-
fault: (".jsgf", ".Jjgram"))

Returns dictionary of import names to grammar rules
Return type dict
Raises GrammarError | JSGFImportError

rule_names
The rule names of each rule in this grammar.

Returns list

rules
Get the rules added to this grammar.

Returns list

22 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

visible_ rules
The rules in this grammar which have the visible attribute set to True.

Returns list

class jsgf.grammars.RootGrammar (rules=None, name="'root’, case_sensitive=False)
A grammar with one public “root” rule containing rule references in an alternative set to every other rule as

such:

public <root> = <rulel>|<rule2>|..|[<ruleN>;
<rulel> = ...;

<rule2> = ...;

<ruleN> = ...;

This is useful if you are using JSGF grammars with CMU Pocket Sphinx.

compile ()
Compile this grammar’s header, imports and rules into a string that can be recognised by a JSGF parser.

This method will compile the grammar using compile_as_root_grammar.

Returns str

2.5 parser — Parser module

This module contains functions that parse strings into Grammar, Import, Rule and Expansion objects.

2.5.1 Supported functionality

The parser functions support the following:
* Alternative sets, e.g. a |b | c.
* Alternative set weights (e.g. /10/ a | /20/ b | /30/ c).
e C++ style single/in-line and multi-line comments (// ... and /+ ... «/ respectively).
* Import statements.
* Optional groupings, e.g. [this is optionall].
* Public and private/hidden rules.
¢ Required groupings,e.g. (a b c) | (e £ g).
* Rule references, e.g. <command>.
* Sequences, e.g. run <command> [now] [please].
 Single or multiple JSGF tags, e.g. text {tagl} {tag2} {tag3}.
* Special JSGF rules <NULL> and <VOID>.
* Unary kleene star and repeat operators (x and +).
» Using Unicode alphanumeric characters for names, references and literals.

» Using semicolons or newlines interchangeably as line delimiters.

2.5. parser — Parser module 23

pyjsgf Documentation, Release 1.9.0

2.5.2 Limitations

This parser will fail to parse long alternative sets due to recursion depth limits. The simplest workaround for this
limitation is to split long alternatives into groups. For example:

// Raises an error.
<n> = (0]...]100);

// Will not raise an error.
// As a side note, this will be parsed to '(0|...[100)".
<n> = (0]...]50)(51|...1100);

This workaround could be done automatically in a future release.
This limitation also applies to long sequences, but it is much more difficult to reach the limit.
2.5.3 Extended Backus—Naur form

Extended Backus—Naur form (EBNF) is a notation for defining context-free grammars. The following is the EBNF
used by pyjsgf’s parsers:

alphanumeric = ? any alphanumeric Unicode character ? ;
weight = '/' , ? any non-negative number ? , '/'
atom = [weight] , (literal | '<' , reference name , '>' |
(" yoexp , LML, exp o, '])
exp = atom , [{ tag | '"+'" | "x'" | exp | "|'" , [weight] , exp } 1 ;
grammar = grammar header , grammar declaration ,
[{ import statement }] , { rule definition } ;
grammar declaration = 'grammar' , reference name , line end ;
grammar header = '#JSGF', ('v' | 'V') , version , word ,
word , line end ;
identifier = { alphanumeric | special } ;
import name = qualified name , ['.x'] | identifier , '.x' ;
import statement = 'import' , '<' , import name , '>' , line end ;
line end = ';' | '"\n' ;
literal = { word } ;
qualified name = identifier , { '.' , identifier } ;
version = ? an integer or floating-point number ? ;
reference name = identifier | qualified name ;
rule definition = ['public'] , '<' , reference name , '>' , '=' ,
exp , line end ;
special = "+' | '=' | ottt t= ot /s
[G L T I L R B R A AT A L I L
LS B I PV v\v
tag = '{' , { tag literal } , '"}' ;
tag literal = { word character | '\{' | '"\}' } ;
word = { word character } ;
word character = alphanumeric | "'" | '=-' ;

I’ve not included comments for simplicity; they can be used pretty much anywhere. pyparsing handles that for us.

2.5.4 Functions

jsgf.parser.parse_expansion_string (s)
Parse a string containing a JSGF expansion and return an Expansion object.

24 Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://github.com/pyparsing/pyparsing

pyjsgf Documentation, Release 1.9.0

Parameters s — str
Returns Expansion
Raises ParseException, GrammarError

jsgf.parser.parse_grammar_ file (path)
Parse a JSGF grammar file and a return a Grammar object with the defined attributes, name, imports and rules.

This method will not attempt to import rules or grammars defined in other files, that should be done by an import
resolver, not a parser.

Parameters path — str
Returns Grammar
Raises ParseException, GrammarError

jsgf.parser.parse_grammar_string(s)
Parse a JSGF grammar string and return a Grammar object with the defined attributes, name, imports and rules.

Parameters s — str
Returns Grammar
Raises ParseException, GrammarError

jsgf.parser.parse_rule_string(s)
Parse a string containing a JSGF rule definition and return a Rule object.

Parameters s — str
Returns Rule
Raises ParseException, GrammarError

jsgf.parser.valid_grammar (s)
Whether a string is a valid JSGF grammar string.

Note that this method will not return False for grammars that are otherwise valid, but have out-of-scope imports.
Parameters s — str

Returns bool

2.6 references — References module

This module contains the base class for referencing rules and grammars by name.

2.6.1 Classes

class jsgf.references.BaseRef (name)
Base class for JSGF rule and grammar references.

name
The referenced name.

Returns str

static valid (name)
Static method for checking if a reference name is valid.

This should be overwritten appropriately in subclasses.

2.6. references — References module 25

pyjsgf Documentation, Release 1.9.0

Parameters name — str

Returns bool

2.7 rules — Rule classes module

This module contains classes for compiling and matching JSpeech Grammar Format rules.

2.7.1 Classes

class jsgf.rules.Rule (name, visible, expansion, case_sensitive=False)

Base class for JSGF rules.

Rule names can be a single word containing one or more alphanumeric Unicode characters and/or any of the
following special characters: +-:;,=l/()[] @#%!"&~$

For example, the following are valid rule names:
* hello
e Ziirich
* user_test
* $100
e 142=3

There are two reserved rule names: NULL and VOID. These reserved names cannot be used as rule names. You
can however change the case to ‘null’ or ‘void’ to use them, as names are case-sensitive.

Parameters
* name — str
* visible - bool
* expansion - a string or Expansion object
* case_sensitive — whether rule literals should be case sensitive (default False).

active
Whether this rule is enabled or not. If it is, the rule can be matched and compiled, otherwise the compile
and mat ches methods will return *“” and False respectively.

Returns bool

case_sensitive
Case sensitivity used when matching and compiling Literal rule expansions.

This property can be True or False. Matching and compilation will be case-sensitive if True and
case-insensitive if False. The default value is False.

Setting this property will override the case_sensitive value for each Literal in the rule and in
referenced rules.

Return type bool
Returns literal case sensitivity

compile ()
Compile this rule’s expansion tree and return the result.

26

Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

pyjsgf Documentation, Release 1.9.0

Returns str

dependencies
The set of rules which this rule directly and indirectly references.

Returns set

dependent_rules
The set of rules in this rule’s grammar that reference this rule. Returns an empty set if this rule is not in a
grammar.

Returns set

disable ()
Stop this rule from producing compile output or from matching speech strings.

enable ()
Allow this rule to produce compile output and to match speech strings.

expansion
This rule’s expansion.

Returns Expansion

find matching part (speech)
Searches for a part of speech that matches this rule and returns it.

If no part matches or the rule is disabled, return None.
Parameters speech — str
Returns str | None

fully qualified_name
This rule’s fully qualified name.

Fully-qualified rule names are the grammar name plus the rule name. For example, if "com.example.
grammar" is the grammar name and "rule" is the rule name, then "com.example.grammar.
rule" is the fully-qualified name.

generate ()
Generate a string matching this rule.

Return type str

get_tags_matching (speech)
Match a speech string and return a list of any matching tags in this rule and in any referenced rules.

Parameters speech — str
Returns list

has_tag(rag)
Check whether there are expansions in this rule or referenced rules that use a given JSGF tag.

Parameters tag — str
Returns bool

matched_tags
A list of JSGF tags whose expansions have been matched. The returned list will be in the order in which
tags appear in the compiled rule.

This includes matching tags in referenced rules.

Returns list

2.7. rules — Rule classes module 27

pyjsgf Documentation, Release 1.9.0

matches (speech)
Whether speech matches this rule.

Matching ambiguous rule expansions is not supported because it not worth the performance hit. Ambigu-
ous rule expansions are defined as some optional literal x followed by a required literal x. For example,
successfully matching 'test ' for the following rule is not supported:

<rule> = [test] test;

Parameters speech — str
Returns bool
qualified name
This rule’s qualified name.

Qualified rule names are the last part of the grammar name plus the rule name. For example, if "com.
example.grammar" is the full grammar name and "rule" is the rule name, then "grammar.rule"
is the qualified name.

reference_count
The number of dependent rules.

Returns int

tags
A list of JSGF tags used by this rule and any referenced rules. The returned list will be in the order in
which tags appear in the compiled rule.

Returns list

was_matched
Whether this rule matched last time the mat ches method was called.

Returns bool

class jsgf.rules.PublicRule (name, expansion, case_sensitive=False)

Rule subclass with visible set to True.

jsgf.rules.HiddenRule

alias of jsgf.rules.PrivateRule

28

Chapter 2. jsgf — JSpeech Grammar Format (JSGF) package

CHAPTER 3

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, using the reStructuredText format instead of Markdown.

This project adheres to Semantic Versioning starting with version 1.1.1.

3.1 1.9.0 - 2020-04-07

3.1.1 Added

* Add JSGF import resolution.
* Add new Grammar methods for getting Rule objects by name.
¢ Add ‘grammar_name’, ‘rule_name’ and ‘wildcard_import’ Import class properties.

* Add ‘qualified_name’ and ‘fully_qualified_name’ Rule class properties.

3.1.2 Changed

* Add missing Grammar ‘import_names’ property.
* Add missing Grammar ‘remove_imports()’ method.
* Change Grammar class to silently reject duplicate Import objects.

¢ Rename HiddenRule rule classes to PrivateRule instead and leave in HiddenRule aliases.

3.1.3 Fixed

¢ Change Grammar.get_rule_from_name() method to validate the ‘name’ parameter.

¢ Change Grammar.remove_import() to only accept Import objects.

29

https://keepachangelog.com/en/1.0.0/
http://docutils.sourceforge.net/rst.html
https://semver.org/spec/v2.0.0.html
https://github.com/Danesprite/pyjsgf/compare/01153...v1.1.1

pyjsgf Documentation, Release 1.9.0

* Fix bug in Grammar.add_rule() that could cause RecursionErrors.

3.2 1.8.0 — 2020-01-31

3.2.1 Added

* Add ‘case_sensitive’ properties to Literal, Rule & Grammar classes.

3.2.2 Changed

* Change ChildList into a list wrapper class instead of a sub-class.

3.2.3 Fixed

* Fix a pyparsing-related bug with the Repeat expansion class.

» Fix issues preventing serialization of expansions, rules and grammars.

3.3 1.7.1 - 2019-07-10

3.3.1 Added

* Add ‘matching benchmark.py’ script.

3.3.2 Changed

* Add a classifier for Python 3.4 in setup.py as it is a supported version.
* Rewrite Expansion.repetition_ancestor property.

» Use the setuptools.find_packages() function in setup.py instead of defining packages manually.

3.3.3 Fixed

* Fix missing call to reset_for_new_match() in Rule.find_matching_part(). Some tests have also been added.

3.4 1.7.0 - 2019-06-19

3.4.1 Added

* Add Expansion and Rule generate() methods for generating matching strings. Thanks @embie27.

¢ Add unit tests for generate() methods into a new test/test_generators.py file. Thanks @embie27.

30 Chapter 3. Changelog

https://github.com/embie27
https://github.com/embie27

pyjsgf Documentation, Release 1.9.0

3.4.2 Changed

* Include the mock package in requirements.txt (test requirement).

3.4.3 Fixed

* Fix two rule expansion parser bugs related to unary operators (+ or *).

» Keep required groupings during parsing to avoid unexpected consequences. Thanks @synesthesiam.

3.5 1.6.0 - 2019-03-17

3.5.1 Added

* Add support for JSGF alternative weights to the AlternativeSet class and the rule expansion parser.

* Add ‘Expansion.matching_slice’ property for getting the slice of the last speech string that matched an Expan-
sion.

* Add ‘Repeat.get_expansion_slices’ method for getting matching slices of repeated rule expansions.

3.5.2 Changed

* Change AlternativeSet ‘weights’ list to use a dictionary instead.
* Change grammar class and parser to allow for optional grammar header values.
» Change input and output of the ‘save_current_matches’ and ‘restore_current_matches’ expansion functions.

* Change jsgf.ext.Dictation expansions to compile as “<DICTATION>" instead of ““”.

Simplify the parser code and improve its performance.

¢ Use ‘<NULL>’ instead of ‘<VOID>’ to compile expansions that should have children but don’t.

3.5.3 Fixed

» Fix parser bug where sequences can lose tags. Thanks @synesthesiam.

* Fix parser bug with sequences and alternative sets.

3.6 1.5.1 — 2018-10-28

3.6.1 Added

* Add section in parser documentation with EBNF for the grammar parser.

3.6.2 Changed

* Change install instructions to use pip instead.

3.5. 1.6.0 - 2019-03-17 31

https://github.com/synesthesiam
https://github.com/synesthesiam

pyjsgf Documentation, Release 1.9.0

3.6.3 Fixed

* Fix a few problems with the README.

¢ Fix missing newlines from Grammar.compile_to_file(). Thanks @daanzu.

3.7 1.5.0 - 2018-09-11

3.7.1 Added

* Add Expansion.matcher_element property.

* Add Expansion.invalidate_matcher method.

* Add Rule.find_matching_part method. Thanks @embie27.
¢ Add docstrings to undocumented classes and methods.

¢ Add Sphinx documentation project files in docs/ and use autodoc for automatic module, class, class member
and function documentation.

e Add CHANGELOG.rst file and include it in the documentation.

3.7.2 Changed

* Make speech string matching scale to large rules/grammars.

* Make jsgf.ext.Dictation expansions match correctly in most circumstances.
* Allow rules to use optional only rule expansions.

» Update docstrings in all Python modules.

e Change internal matching method to implement for subclasses from _matches_internal to
_make_matcher_element.

3.7.3 Deprecated

* Add deprecation note for the Grammar.compile_grammar method.

* Deprecate the ExpansionError and MatchError classes.

3.7.4 Fixed

* Fix issue #12 and probably some other bugs where speech wouldn’t match rules properly.

e Fix _ hash__ methods for the Dictation and AlternativeSet classes.

3.7.5 Removed

* Remove support for matching ambiguous rule expansion because it is not worth the performance hit.

32 Chapter 3. Changelog

https://github.com/daanzu
https://github.com/embie27
https://github.com/Danesprite/pyjsgf/issues/12

pyjsgf Documentation, Release 1.9.0

3.8 1.4.1 - 2018-08-20

3.8.1 Added

* Add ChildList list subclass for storing rule expansion children and updating parent-child relationships appropri-
ately on list operations.

3.8.2 Changed

» Change Literal.text attribute into a property with some validation.

3.8.3 Fixed

* Fix AlternativeSet bug with parser (issue #9). Thanks @embie27.

3.9 1.4.0 - 2018-08-09

3.9.1 Added

* Implement grammar, rule and expansion parsers.

¢ Add setters for the BaseRef name property and Expansion children property.

3.9.2 Changed

* Allow imported rule names to be used by NamedRuleRefs.

3.9.3 Fixed

 Fix NamedRuleRefs for rule expansion functions and the Rule.dependencies property.

3.10 1.3.0 - 2018-07-14

3.10.1 Added

* Add methods/properties to the Rule and Grammar classes for JSGF tag support.
* Add rule resolution for NamedRuleRef class.

* Add method and property for checking expansion match values for each repetition.

3.10.2 Fixed

* Fix various bugs with JSGF rule expansions.

3.8. 1.4.1 -2018-08-20 33

https://github.com/Danesprite/pyjsgf/issues/9
https://github.com/embie27

pyjsgf Documentation, Release 1.9.0

3.11 1.2.3 - 2018-06-02

3.11.1 Added

* Add ‘six’ as a required package to support Python versions 2.x and 3.x.

3.11.2 Changed

¢ Change add_rule methods of grammar classes to silently fail when adding rules that are already in grammars.

3.11.3 Fixed

* Fix hash implementations and __str__ methods for rule classes.

¢ Other minor fixes.

3.12 1.2.2 - 2018-04-28

3.12.1 Added

* Add Expansion.collect_leaves method.

3.12.2 Changed

* Reset match data for unmatched branches of expansion trees.
» Change Expansion leaf properties to also return RuleRefs.

* Move some Literal class properties to the Expansion superclass.

3.13 1.2.1 — 2018-04-27

3.13.1 Added

* Add calculation caching to improve matching performance.

* Add optional shallow parameter to Expansion functions like map_expansion.

3.13.2 Fixed

* Fix bug with BaseRef/RuleRef comparison.

* Fix bug in expand_dictation_expansion function.

34

Chapter 3. Changelog

pyjsgf Documentation, Release 1.9.0

3.14 1.2.0 - 2018-04-09

3.14.1 Added

* Add a few methods and properties to Expansion classes.
¢ Add JointTreeContext class and find_expansion function.

e Add __rep__ methods to base classes for convenience.

3.14.2 Fixed

* Fix a bug where rules with mutiple RuleRefs wouldn’t match.

3.15 1.1.1 - 2018-03-26

First tagged release and start of proper versioning. Too many changes to list here, see the changes by following the

link above.

3.14. 1.2.0 - 2018-04-09

35

pyjsgf Documentation, Release 1.9.0

36 Chapter 3. Changelog

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

37

pyjsgf Documentation, Release 1.9.0

38 Chapter 4. Indices and tables

Python Module Index

j

jsgf,
jsqgf.
jsqgf.
jsgf.
jsqgf.
jsqgf.
jsqgf.
jsqgf.
jsgf.
jsqgf.
jsqgf.

5

errors, 5
expansions, 6
ext, 13
ext.expansions, 13
ext.grammars, 16
ext.rules, 14
grammars, 18
parser, 23
references, 25
rules, 26

39

pyjsgf Documentation, Release 1.9.0

40 Python Module Index

Index

Symbols

_make_matcher_element ()
(jsgf-expansions. Expansion method), 6

A

active (jsgf-rules.Rule attribute), 26

add_import () (jsgf-grammars.Grammar method), 19

add_imports () (jsgf.grammars.Grammar method),
19

add_rule () (jsgf.ext.grammars.DictationGrammar
method), 16

add_rule () (jsgf.grammars.Grammar method), 19

add_rules () (jsgf.grammars.Grammar method), 19

AlternativeSet (class in jsgf.expansions), 6

B

BaseRef (class in jsgf.references), 25

C

calculate_expansion_sequence () (in module
Jsgf-ext.expansions), 14

can_repeat (jsgf.ext.rules.SequenceRule attribute), 14

case_sensitive (jsgfexpansions.Literal attribute),
10

case_sensitive
tribute), 19

case_sensitive (jsgfrules.Rule attribute), 26

ChildList (class in jsgf.expansions), 6

children (jsgf.expansions.Expansion attribute), 6

clear () (jsgf-expansions.ChildList method), 6

collect_leaves () (jsgf-expansions. Expansion
method), 7

CompilationError (class in jsgf.errors), 5

compile () (jsgf-ext.grammars. DictationGrammar
method), 16

compile () (jsgf-ext.rules.SequenceRule method), 15

(jsgf-grammars.Grammar at-

compile () (jsgf.grammars.Grammar method), 19
compile () (jsgf-grammars.RootGrammar method), 23
compile () (jsgf-rules.Rule method), 26

compile_as_root_grammar ()
(jsgf-ext.grammars. DictationGrammar
method), 16

compile_as_root_grammar ()
(jsgf-grammars.Grammar method), 19

compile_grammar () (jsgf-grammars.Grammar

method), 20

compile_to_file() (jsgf-grammars.Grammar
method), 20

compiled_tag (jsgf-expansions.Expansion attribute),
7

copy () (jsgf-expansions.Expansion method), 7

current_is_dictation_only
(jsgf.ext.rules.SequenceRule attribute), 15

current_match (jsgfexpansions.Expansion
tribute), 7

at-

D

dependencies (jsgf-rules.Rule attribute), 27
dependent_rules (jsgf.rules.Rule attribute), 27
detach_tree() (jsgf-expansions.JointTreeContext
static method), 10
Dictation (class in jsgf.ext.expansions), 13
DictationGrammar (class in jsgf.ext.grammars), 16
disable () (jsgf-rules.Rule method), 27
disable_rule () (jsgf-grammars.Grammar method),
20

E

enable () (jsgf-rules.Rule method), 27

enable_rule () (jsgf.grammars.Grammar method),
20

entire_match (jsgfext.rules.SequenceRule attribute),
15

expand_dictation_expansion ()
Jjsgf-ext.expansions), 14

Expansion (class in jsgf.expansions), 6

expansion (jsgfrules.Rule attribute), 27

expansion_sequence (jsgfext.rules.SequenceRule
attribute), 15

(in module

41

pyjsgf Documentation, Release 1.9.0

ExpansionError (class in jsgf.errors), 5

F

filter_expansion () (in module jsgf.expansions),
12

find_expansion () (in module jsgf.expansions), 12

find_matching_part () (jsgfrules.Rule method),
27

find_matching_rules()
(jsgf-ext.grammars.DictationGrammar
method), 17

find_matching_rules()
(jsgf-grammars.Grammar method), 20

find_tagged_rules () (jsgf-.grammars.Grammar
method), 20

flat_map_expansion ()
Jsgf-expansions), 12

fully_qualified_name (jsgf-rules.Rule attribute),
27

(in module

G

generate () (jsgfexpansions.AlternativeSet method),

6
generate () (jsgf-expansions.Expansion method), 7
generate () (jsgf-expansions.KleeneStar method), 10
generate () (jsgf-expansions.Literal method), 10
generate () (jsgf-expansions.NamedRuleRef method),
11
generate () (jsgf-expansions.OptionalGrouping
method), 11

generate () (jsgf-expansions.Repeat method), 11

generate () (jsgf-rules.Rule method), 277

get_expansion_matches ()
(jsgf-expansions.Repeat method), 11

get_expansion_slices () (jsgfexpansions.Repeat
method), 11

get_generated_rules ()
(jsgf-ext.grammars.DictationGrammar
method), 17

get_original_rule ()
(jsgf-ext.grammars. DictationGrammar
method), 17

get_rule () (jsgf-grammars.Grammar method), 21

get_rule_from_name () (jsgf-grammars.Grammar
method), 21

get_rules () (jsgf.grammars.Grammar method), 21

get_rules_from_names ()
(jsgf-grammars.Grammar method), 21

get_tags_matching () (jsgf-rules.Rule method), 277

graft_sequence_matches ()
(jsgf-ext.rules.SequenceRule static method), 15

Grammar (class in jsgf.grammars), 19

grammar_name (jsgf-grammars.Import attribute), 18

GrammarError (class in jsgf.errors), 5

H

had_match (jsgf.expansions. Expansion attribute), 7

has_next_expansion (jsgf.ext.rules.SequenceRule
attribute), 15

has_tag () (jsgfrules.Rule method), 27

HiddenRule (in module jsgf.rules), 28

HiddenSequenceRule (in module jsgf.ext.rules), 16

Import (class in jsgf-grammars), 18
import_environment (jsgf.grammars.Grammar at-
tribute), 21
import_names (jsgf.grammars.Grammar attribute),
21
imports (jsgf.grammars.Grammar attribute), 21
invalidate_calculations ()
(jsgf-expansions. Expansion method), 7
invalidate_matcher ()
(jsgf-expansions. Expansion method), 7

is_alternative (jsgf.expansions.Expansion at-
tribute), 8

is_descendant_of () (jsgf-expansions. Expansion
method), 8

is_optional (jsgf-expansions.Expansion attribute), 8

J

join_tree () (jsgf-expansions.JointTreeContext static
method), 10

JointTreeContext (class in jsgf.expansions), 9

jsgf (module), 5

jsgf.errors (module), 5

jsgf.expansions (module), 6

jsgf.ext (module), 13

jsgf.ext.expansions (module), 13

jsgf.ext.grammars (module), 16

jsgf.ext.rules (module), 14

jsgf.grammars (module), 18

jsgf.parser (module), 23

jsgf.references (module), 25

jsgf.rules (module), 26

jsgf_header (jsgf.grammars.Grammar attribute), 21

K

KleeneStar (class in jsgf-expansions), 10

L

leaves (jsgf-expansions.Expansion attribute), 8

leaves_after (jsgf-expansions.Expansion attribute),
8

Literal (class in jsgf.expansions), 10

M

make_expansion ()
static method), 8

(jsgf-expansions.Expansion

42

Index

pyjsgf Documentation, Release 1.9.0

map_expansion () (in module jsgf.expansions), 12
match_rules (jsgf.ext.grammars.DictationGrammar
attribute), 17
match_rules (jsgf.grammars.Grammar attribute), 22
matchable_leaves_after
(jsgf-expansions. Expansion attribute), 8
matched_tags (jsgf.rules.Rule attribute), 27
matcher_element (jsgf-expansions.Expansion
attribute), 8
MatchError (class in jsgf.errors), 6
matches () (jsgf.expansions.Expansion method), 8
matches () (jsgf-ext.rules.SequenceRule method), 15
matches () (jsgf-rules.Rule method), 27
matches_overlap () (in module jsgf.expansions), 13
matching_regex_pattern (jsgfexpansions.Literal
attribute), 10
matching_regex_pattern

(jsgf-ext.expansions.Dictation attribute),
14

matching_slice (jsgf.expansions.Expansion at-
tribute), 9

mutually_exclusive_of ()
(jsgf-expansions. Expansion method), 9

N

name (jsgf.references.BaseRef attribute), 25
NamedRuleRef (class in jsgf.expansions), 11
NullRef (class in jsgf.expansions), 11

O

OptionalGrouping (class in jsgf-expansions), 11
orphan_children () (jsgf-expansions.ChildList
method), 6

P

parent (jsgf.expansions.Expansion attribute), 9
parse_expansion_string() (in
Jjsgf-parser), 24
parse_grammar_file () (in module jsgf.parser), 25
parse_grammar_string () (in module jsgf.parser),
25
parse_rule_string () (in module jsgf.parser), 25
PublicRule (class in jsgf.rules), 28
PublicSequenceRule (class in jsgf.ext.rules), 16

Q

qualified_name (jsgfrules.Rule attribute), 28

R

rearrange_rules ()
(jsgf-ext.grammars. DictationGrammar
method), 17

reference_count (jsgf.rules.Rule attribute), 28

module

referenced_rule (jsgfexpansions.NamedRuleRef
attribute), 11

refuse_matches
tribute), 15

remove_import ()

(jsgf-ext.rules.SequenceRule at-

(jsgf-grammars.Grammar

method), 22

remove_imports () (jsgf-grammars.Grammar
method), 22

remove_rule () (jsgf.ext.grammars.DictationGrammar
method), 17

remove_rule () (jsgf.grammars.Grammar method),

22

Repeat (class in jsgf.expansions), 11

repetition_ancestor (jsgfexpansions.Expansion
attribute), 9

repetitions_matched (jsgf.expansions.Repeat at-
tribute), 11

RequiredGrouping (class in jsgf.expansions), 11

reset_for_new_match ()
(jsgf-expansions.Expansion method), 9

reset_match_data () (jsgf.expansions. Expansion
method), 9

reset_match_data()
method), 11

reset_sequence_rules ()
(jsgf-ext.grammars.DictationGrammar
method), 17

resolve () (jsgf-grammars.Import method), 18

resolve_imports () (jsgf-grammars.Grammar
method), 22

restart_sequence ()
method), 15

restore_current_matches ()
Jjsgf-expansions), 13

root_expansion (jsgf.expansions.Expansion
tribute), 9

RootGrammar (class in jsgf.grammars), 23

Rule (class in jsgf.rules), 26

rule_name (jsgf-grammars.Import attribute), 18

rule_names (jsgf.grammars.Grammar attribute), 22

RuleRef (class in jsgf.expansions), 12

rules (jsgf.ext.grammars.DictationGrammar attribute),
17

rules (jsgf.grammars.Grammar attribute), 22

S

save_current_matches ()
Jjsgf-expansions), 13

Sequence (class in jsgf.expansions), 12

SequenceRule (class in jsgf.ext.rules), 14

set_next () (jsgfext.rules.SequenceRule method), 16

set_weight () (jsgf-expansions.AlternativeSet
method), 6

(jsgf-expansions.Repeat

(jsgf.ext.rules.SequenceRule
(in module

at-

(in module

Index

43

pyjsgf Documentation, Release 1.9.0

T

tag (jsgf.expansions.Expansion attribute), 9
tags (jsgf-ext.rules.SequenceRule attribute), 16
tags (jsgf-rules.Rule attribute), 28

text (jsgf-expansions.Literal attribute), 10

U

use_current_match (jsgfext.expansions.Dictation
attribute), 14

\Y

valid () (jsgf.references.BaseRef static method), 25
valid_grammar () (in module jsgf.parser), 25
validate_compilable ()
(jsgf-expansions. Expansion method), 9
validate_compilable () (jsgf.expansions.Literal
method), 10
validate_compilable ()
(jsgf-ext.expansions.Dictation method), 14
visible_rules (jsgf.grammars.Grammar attribute),
22
VoidRef (class in jsgf.expansions), 12

W

was_matched (jsgf.rules.Rule attribute), 28

weights (jsgf.expansions.AlternativeSet attribute), 6

wildcard_import (jsgf.grammars.Import attribute),
18

44

Index

	Introduction
	Installation
	Supported Python Versions
	Unit Testing
	Multilingual Support
	Documentation

	jsgf — JSpeech Grammar Format (JSGF) package
	errors — Error classes module
	expansions — Expansion classes and functions module
	jsgf.ext — JSGF extensions sub-package
	grammars — Grammar classes module
	parser — Parser module
	references — References module
	rules — Rule classes module

	Changelog
	1.9.0 – 2020-04-07
	1.8.0 – 2020-01-31
	1.7.1 – 2019-07-10
	1.7.0 – 2019-06-19
	1.6.0 – 2019-03-17
	1.5.1 – 2018-10-28
	1.5.0 – 2018-09-11
	1.4.1 – 2018-08-20
	1.4.0 – 2018-08-09
	1.3.0 – 2018-07-14
	1.2.3 – 2018-06-02
	1.2.2 – 2018-04-28
	1.2.1 – 2018-04-27
	1.2.0 – 2018-04-09
	1.1.1 – 2018-03-26

	Indices and tables
	Python Module Index
	Index

